Asymptotically optimal estimation in misspecified time series models
نویسندگان
چکیده
منابع مشابه
Locally asymptotically optimal tests for nonlinear time-series models
Based on the local asymptotic normality (LAN) of the log-likelihood ratio statistic, we proposed some distribution-free tests for examining simultaneously hypotheses about the conditional mean and the conditional variance functions in time series models. Our results are established under stationarity and ergodicity conditions with unspecified "innovation" densities under the null hypothesis as ...
متن کاملSieve Inference on Possibly Misspecified Semi-nonparametric Time Series Models∗
This paper first establishes the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi-nonparametric time series models. We show that, even when the sieve score process is not a martingale difference, the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals are the same as those for independent da...
متن کاملEvaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station
prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...
متن کاملAgnostic Estimation for Misspecified Phase Retrieval Models
The goal of noisy high-dimensional phase retrieval is to estimate an s-sparse parameter β∗ ∈ R from n realizations of the model Y = (X>β∗)2 + ε. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which Y = f(X>β∗, ε) with unknown f and Cov(Y, (X>β∗)2) > 0. For example, MPR encompasses Y = h(|X>β∗|) + ε with increasing h as ...
متن کاملAdaptive estimation in time series regression models
This work develops adaptive estimators for a linear regression model with serially correlated errors. We show that these results continue to hold when the order of the ARMA process characterizing the errors is unknown. The finite sample results are promising, indicating that substantial efficiency gains may be possible for samples as small as 50 observations. We use these estimators to investig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1996
ISSN: 0090-5364
DOI: 10.1214/aos/1032526951